Finite dimensional modules

Huimin Goo

In this semiliar, we restrict ourselves that g is a semisimple Lie algebra over C, with a fixed triangular decomposition $g=N^-\oplus H\oplus N^+$. \emptyset the corresponding root system $\Delta=\{\alpha_1,\dots,\alpha_k\}$ a basis of \emptyset . In the Weyl group.

Let V is a finite dimensional g-module. V is a weight module since H acts diagonally on V. Due to Weyl's complete reducibility theorem, every finite dimensional g-module is a direct sum of irreducible ones, it suffices to study finite dimensional irreducible g-modules

Recall:

(up to isomorphism)

Thm: Let heHt, there exists only one irreducible standard cyclic module V(1) = U(g). Vx of weight 1.

Since V has at least one maximal vector v_{λ} , the V= Ug1. v_{λ} by irreducibility. That means V is isomorphic to V(λ 1)

Q: Which of the V() are finite dimensional?

For each simple root oi, let Si be the corresponding copy of s(1,0) in g. See V(1) as a finite dimensional module for Si. vs is also a maximal vector for Si. For each i, the weight of a maximal vector like is a nonnegative integer (one less than olm V), then we have

Thm: If V is a finite dimensional irreducible g-module of highest weight λ , then λ (hi) is a nonnegative integer for $1 \le i \le \ell$.

We denote the set of dominant integral linear functions by $\Lambda^+ = \{\lambda \in H^* \mid \lambda \in \mathbb{N} \}$ for $1 \le i \le l \}$. Thm: If $\lambda \in \Lambda^+$, then the irreducible g-module $V(\lambda)$ is finite dimensional. Moreover, its set of weights $T(\lambda)$ is permuted by W with dim $Vu = \dim Vu$ for $i \in W$.

pf. Step 1 V() contains a nonzero finite dimensional &-module for each 15 i 5 l. < Vs. yi Vs. ... yi xihil Vs.>

To see it is a Si-module, we need to check it is stable under xi, yi, hi.

- · xi yi k Vx = -k(k-1-k(hi)) yi k Vx
- $y_i^{\lambda (h_i)+1} V_{\lambda} = 0$ Since $X_j^i y_i^{\lambda (h_i)+1} V_{\lambda} = 0$, $y_i^{\lambda (h_i)+1} V_{\lambda}$ is another maximal vector of $V(\lambda)$, contradicted with irreducibility.
- hi yi $V_{\lambda} = (-2k + \lambda (hi)) y_i^{BH} V_{\lambda}$
- Step 1 V(1) is the sum of all its finite dimensional Q-submodules for each 1525l. Denoted by V'

 It is non-zero by Step 1. Let W be any finite dimensional Q-submodule of V(1).

Note that $\chi_{\alpha}W$ for $\alpha\in\phi$ is still finite dimensional, S_{i} -stable. Then $V(\lambda)=V'$ by irreduciblity. S_{i} to S_{i} : S_{i} = exp $\phi(x_{i})$ exp $\phi(-y_{i})$ exp $\phi(x_{i})$ is a well-defined automorphism of $V(\lambda)$.

Indeed, for any $v \in V$, v lies in a finite sum of finite dimensional Si-submodules, hence in a finite dimensional Si-module. It implies $\phi(x_i)$ and $\phi(y_i)$ are locally nilpotent endomorphisms of V for $1 \le i \le l$.

<u>Step 4</u>; If u is any weight of V, then Si(Vu) = VisuSince Vu is firste dimensional, lies in a finite sum of finite dimensional Si-submodules, hence in a finite dimensional Si-module N. Then Si(Vu) sends to the weight vectors of weight 6i(u). Then Si(Vu) = Visu by Si is an automorphism.

Step 5: The set of weights $\pi(\lambda)$ is finite. By Step 4, $\pi(\lambda)$ is stable under W, and dow $V_u = \text{dim } V_{6u}$. Consider $\Lambda = \ell \lambda \in H^* \mid \lambda \text{chi} \mid \mathbb{Z}$ for $1 \le i \le \ell \mid$. $\forall u \in \Lambda$, is conjugate under W to one and only one dominate integeral weight. Moveover, $\forall u \in \pi(\lambda)$, the dominant integral weight $\prec \lambda$. Using the fact: the set of W-conjugates of all dominant integral linear function $u < \lambda$ is finite.

Conclusion: Since dim Vu is finite for all LETTIAI, and TITAI is finite, then dim V is finite.

Cor: The map $\lambda \mapsto V(\lambda)$ includes a one-one correspondence between Λ^+ and the isomorphism classes of finite dimensional irreducible g-modules.

Now we remain V() in the finite dimensional situation, i.e. $\lambda \in \Lambda^{+}$.

Prop. LEN belongs to $\pi(\lambda) \Leftrightarrow \mu$ and all its W-congugates be $\prec \lambda$.

pf: "> obvious, since T(X) is permuted by TV.

Let $u \in \pi(\lambda)$, $\exists G \in W$ at $G \in G$ to $G \in G$. Then $G \in G$ is the $G \in G$ is the $G \in G$ is the $G \in G$ and $G \in G$. The the weights in $\pi(\lambda)$ of the form $G \in G$ connected string. Moreover, the reflection $G \in G$ reverses this string. Then $G \in G \cap G$ is invariant under $G \in G$. The the weights in $\pi(\lambda)$ of the form $G \in G$ is invariant under $G \in G$. Then $G \in G \cap G$ is invariant under $G \in G$ is $G \in G$. Then $G \in G \cap G$ is invariant under $G \in G$.

Q: See an example?

Consider $g = sl_3$. $W = i S_{\alpha_1}$, S_{α_2} , S_{α_3} , S_{α_4} , S_{α_5} , S_{α_5} S_{α_5} S_{α_5} , S_{α_5

$$\alpha r = \frac{1}{2} (-\gamma r + 5 \gamma^{2})$$

$$\alpha r = \frac{1}{2} (5 \gamma r - \gamma^{2})$$

Q: How to characterise V() by generators and relations?

Recall that there is a canonical homomorphism of left u(g)-module $V: U(x) \longrightarrow M(\lambda) = U(y) \otimes_{U(x)} V_{\lambda}$ $\overline{1} \mapsto 1 \otimes V_{\lambda}$

where I() is the left ideal of U(g) generated by $\pi_{\alpha}(\alpha > 0)$ and $\pi_{\alpha} - \lambda h_{\alpha}(\lambda) = (\alpha \in \phi)$ By PBW basis, $\gamma(\overline{g}) = g \otimes V_{\lambda} = g \otimes V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = 0 \Rightarrow g \in U(B) \Rightarrow \overline{g} = 0$ i.e. $M(\lambda) \subseteq U(g)$ $U(g) = g \otimes V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = 0$ $U(g) = g \otimes V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = 0$ $U(g) = g \otimes V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = 0$ $U(g) = g \otimes V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = 0$ $U(g) = g \otimes V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = 0$ $U(g) = g \otimes V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = 0$ $U(g) = g \otimes V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = 0$ $U(g) = g \otimes V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = 0$ $U(g) = g \otimes V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = g \otimes g_{\alpha} V_{\lambda} = 0$

Equivalently, Ich is the annihilator of a maximal vector V_{λ} of weight λ .

Now fix a $\lambda \in \Lambda^{\epsilon}$, let $J(\lambda)$ be the left ideal in U(g) which annihilates a maximal vector of weight λ .

The inclusion $I(\lambda) \subset J(\lambda)$ includes the canonical map $Z(\lambda) = \frac{U(g)}{I(\lambda)} \longrightarrow \frac{U(g)}{J(h)} \cong V(h)$

Thm: Let $\lambda \in \Lambda^{\pm}$, then $\mathfrak{T}(\lambda)$ is generated by $\mathfrak{T}(\lambda)$ along with all $\mathfrak{Y}_{\xi}^{\lambda(\lambda)(1+1)}$ of: let $\mathfrak{T}(\lambda)$ is generated by $\mathfrak{T}(\lambda)$ along with all $\mathfrak{Y}_{\xi}^{\lambda(\lambda)(1+1)}$.

Step 1: $V(\lambda) = U(y)_{J(\lambda)}$ is finite dimensional. Thanks to the proof of the above Thm, it suffice to show $V(\lambda)$ is a sum of finite dimensional Σ -submodules. It is equivalent to show each y_i and x_i is locally nilpotent on $V(\lambda)$. For x_i it is obvious, since we cannot have $u+k\alpha_i < \lambda$ for all k>0. For y_i , by PBW thm, $V(\lambda)$ is spanned by the cosets of y_i ... y_i y_i ... y_i ... y_i ... y_i ... y_i ... y_i ... y_i y_i ... y_i ... y_i ... y_i ... y_i ... y_i ... y_i y_i ... y_i ... y_i ... y_i ... y_i ... y_i ... y_i y_i ... y_i ... y_i ... y_i ... y_i ... y_i ... y_i y_i ... y_i ... y_i ... y_i ... y_i ... y_i ... y_i y_i ... y_i ... y_i ... y_i ... y_i ... y_i ... y_i y_i ... y_i ... y_i ... y_i ... y_i ... y_i ... y_i y_i ... y_i ... y_i ... y_i ... y_i ... y_i ... y_i ..

((k+2)[yi, yiu] yi k+2 + (k+3)[yk, Cyk, yiu] yk k+ + (k+3) [yk, Cyk, Yk, Ji] yk k) yk. Yi = 1

Since root strings have length at most 4.

Stap 2: On one hand, $V(\lambda)$ is standard cyclic, so it is indecomposable.

On the other hand, $V(\lambda)$ is finite dimensional, so it is complete reducible.

Hence, $V(\lambda)$ is irreducible. $J(\lambda) \in I(\lambda)$ implies that $V(\lambda)$ is a homomorphic image of $V(\lambda)$.

It forces $V(\lambda) = V(\lambda)$ by $V(\lambda)$ is irreducible.

Q: As is usually done, what's the character of V(1)?

Recall that the formal character chiun is defined by $\sum m_{x\in R(N)} e^{u}$, where $m_{x(u)} = \dim VAl_u$. e^u is the basis of group ring Z(N) with addition

multiplication $e^{\lambda}e^{u} = e^{\lambda + u}$ and extend by linearity.

W acts naturally on ZCN by $6e^{\alpha}=e^{6\alpha}$ The character of M(λ) is easy to see, since the weight of basis vectors are $\lambda-\sum_{okelli}k_{old}$ Then $ch_{M(\lambda)} = e^{\lambda} T_{\text{weap}} e^{-k_{\text{e}} t \lambda} = e^{\lambda} T_{\text{weap}} (1 - e^{-t \lambda})^{-1}$. We denote $t_{\text{weap}} (1 - e^{-t \lambda})$ by $t_{\text{e}} (1 - e^{-t \lambda})$.

Thus: (Weyl Character Formula)

Thm: (Weyl Character Formula) $Ch_{V(A)} = e^{-p} \Delta^{-1} \sum_{u \in W} sgn(u) e^{u \cdot (\lambda + p)}$

- - Stop 2 = Consider the infinite matrix (april has nonnegative integer entries, is upper triangular with $a_{\lambda\lambda}=1$ along the diagonal. Since $(a_{\mu}u)$ is invertible, then $ch_{\nu\alpha}=\sum_{u\in S}b_{\lambda u}$ ch_{mu1}. for some integer coefficients $b_{\lambda u}$. Substitude ch_{mai} by $e^{u}\Delta^{1}$, we have that $e^{\rho}\Delta ch_{\nu\alpha}=\sum_{u\in S}b_{\lambda u}e^{u+\rho}$. Take $s_{i}\in W$, $s_{i}(e^{\rho}\Delta)=e^{\rho-\alpha i}(1-e^{\alpha i})$ are $e^{\alpha i}(1-e^{\alpha i})=e^{\alpha i}(1-e^{\alpha i})$. For any $u\in W$, $u_{i}(e^{\alpha}\Delta)=sgn(u_{i})e^{\alpha i}\Delta$.
 - Step 1: On one hand, $w(\sum_{u \in S} b_{\lambda u} e^{u+p}) = \sum_{u \in S} b_{\lambda u} e^{u c u+p}$. On the other hand, $w(\sum_{u \in S} b_{\lambda u} e^{u+p}) = \sup_{u \in S} b_{\lambda u} e^{u+p}$. Hence $b_{\lambda u} = \sup_{u \in S} b_{\lambda u} e^{u+p}$. If $v \in V$ is minimal. Claim that v + p be a dominant integral weight. Moreover, $v = \lambda$.

 Indeed, If $\lambda_u \in \Lambda^+$ such that $\lambda_u \in V$ for $v \in V$, $v \in V$, and $v \in V$, $v \in V$. Then $v \in V$.

 Consider $v \in S$, then $v \in V$, $v + p \in V$, $v + p \in V$, $v + p \in V$, $v \in V$, and $v \in V$. It implies $v \in V$.
 - Step 4: Until now, we know that for any weight such that but ± 0 , there is well such that $u+p=w(\lambda+p)$. Then bx=sgn(w)bx=sgn(w). It implies $\sum_{u=s}^{\infty}bxue^{u+p}=\sum_{u=w}^{\infty}sgn(u)e^{w(\lambda+p)}$, we have done $^{\wedge}$.